3.283 \(\int \frac {x^2}{(1-a^2 x^2)^2 \tanh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=27 \[ \frac {\text {Chi}\left (2 \tanh ^{-1}(a x)\right )}{2 a^3}-\frac {\log \left (\tanh ^{-1}(a x)\right )}{2 a^3} \]

[Out]

1/2*Chi(2*arctanh(a*x))/a^3-1/2*ln(arctanh(a*x))/a^3

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6034, 3312, 3301} \[ \frac {\text {Chi}\left (2 \tanh ^{-1}(a x)\right )}{2 a^3}-\frac {\log \left (\tanh ^{-1}(a x)\right )}{2 a^3} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((1 - a^2*x^2)^2*ArcTanh[a*x]),x]

[Out]

CoshIntegral[2*ArcTanh[a*x]]/(2*a^3) - Log[ArcTanh[a*x]]/(2*a^3)

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 6034

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(
m + 1), Subst[Int[((a + b*x)^p*Sinh[x]^m)/Cosh[x]^(m + 2*(q + 1)), x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c,
 d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {x^2}{\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\sinh ^2(x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{a^3}\\ &=-\frac {\operatorname {Subst}\left (\int \left (\frac {1}{2 x}-\frac {\cosh (2 x)}{2 x}\right ) \, dx,x,\tanh ^{-1}(a x)\right )}{a^3}\\ &=-\frac {\log \left (\tanh ^{-1}(a x)\right )}{2 a^3}+\frac {\operatorname {Subst}\left (\int \frac {\cosh (2 x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{2 a^3}\\ &=\frac {\text {Chi}\left (2 \tanh ^{-1}(a x)\right )}{2 a^3}-\frac {\log \left (\tanh ^{-1}(a x)\right )}{2 a^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 27, normalized size = 1.00 \[ \frac {\text {Chi}\left (2 \tanh ^{-1}(a x)\right )}{2 a^3}-\frac {\log \left (\tanh ^{-1}(a x)\right )}{2 a^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((1 - a^2*x^2)^2*ArcTanh[a*x]),x]

[Out]

CoshIntegral[2*ArcTanh[a*x]]/(2*a^3) - Log[ArcTanh[a*x]]/(2*a^3)

________________________________________________________________________________________

fricas [B]  time = 0.52, size = 58, normalized size = 2.15 \[ -\frac {2 \, \log \left (\log \left (-\frac {a x + 1}{a x - 1}\right )\right ) - \operatorname {log\_integral}\left (-\frac {a x + 1}{a x - 1}\right ) - \operatorname {log\_integral}\left (-\frac {a x - 1}{a x + 1}\right )}{4 \, a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-a^2*x^2+1)^2/arctanh(a*x),x, algorithm="fricas")

[Out]

-1/4*(2*log(log(-(a*x + 1)/(a*x - 1))) - log_integral(-(a*x + 1)/(a*x - 1)) - log_integral(-(a*x - 1)/(a*x + 1
)))/a^3

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{{\left (a^{2} x^{2} - 1\right )}^{2} \operatorname {artanh}\left (a x\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-a^2*x^2+1)^2/arctanh(a*x),x, algorithm="giac")

[Out]

integrate(x^2/((a^2*x^2 - 1)^2*arctanh(a*x)), x)

________________________________________________________________________________________

maple [A]  time = 0.20, size = 24, normalized size = 0.89 \[ \frac {\Chi \left (2 \arctanh \left (a x \right )\right )}{2 a^{3}}-\frac {\ln \left (\arctanh \left (a x \right )\right )}{2 a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-a^2*x^2+1)^2/arctanh(a*x),x)

[Out]

1/2*Chi(2*arctanh(a*x))/a^3-1/2*ln(arctanh(a*x))/a^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{{\left (a^{2} x^{2} - 1\right )}^{2} \operatorname {artanh}\left (a x\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-a^2*x^2+1)^2/arctanh(a*x),x, algorithm="maxima")

[Out]

integrate(x^2/((a^2*x^2 - 1)^2*arctanh(a*x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \[ \int \frac {x^2}{\mathrm {atanh}\left (a\,x\right )\,{\left (a^2\,x^2-1\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(atanh(a*x)*(a^2*x^2 - 1)^2),x)

[Out]

int(x^2/(atanh(a*x)*(a^2*x^2 - 1)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\left (a x - 1\right )^{2} \left (a x + 1\right )^{2} \operatorname {atanh}{\left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-a**2*x**2+1)**2/atanh(a*x),x)

[Out]

Integral(x**2/((a*x - 1)**2*(a*x + 1)**2*atanh(a*x)), x)

________________________________________________________________________________________